Global Optimization Methods in Geophysical Inversion

Global Optimization Methods in Geophysical Inversion

Author: Mrinal K. Sen

Publisher: Cambridge University Press

ISBN: 9781107011908

Category: Science

Page: 304

View: 557

"Making inferences about systems in the Earth's subsurface from remotely-sensed, sparse measurements is a challenging task. Geophysical inversion aims to find models which explain geophysical observations - a model-based inversion method attempts to infer model parameters by iteratively fitting observations with theoretical predictions from trial models. Global optimization often enables the solution of non-linear models, employing a global search approach to find the absolute minimum of an objective function, so that predicted data best fits the observations. This new edition provides an up-to-date overview of the most popular global optimization methods, including a detailed description of the theoretical development underlying each method, and a thorough explanation of the design, implementation, and limitations of algorithms. A new chapter provides details of recently-developed methods, such as the neighborhood algorithm, and particle swarm optimization. An expanded chapter on uncertainty estimation includes a succinct description on how to use optimization methods for model space exploration to characterize uncertainty, and now discusses other new methods such as hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples ofapplications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory, and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration. "--